cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho các số thực x, y, z, a, b, c khác 0 thỏa mãn x/a = y/b = z/c. Chứng minh rằng: x^2 + y^2 + z^2 / (a^x + b*y + c*z)^2 = 1/ a^2 + b^2 + c^2
Cho các số thực a, b, c khác 0 thảo mãn: a + b + c, a^2 + b^2 + c^2 = 4 và x/a = y/b = z/c. Chứng minh rằng x*y + y*z + z*x = 0
cho a,b,c là số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn xy/ay+bx=yz/bz+cy=zx/cx+az=x^2+y^2+z^2/a^2+b^2+c^2
Giải chi tiết nha
Cho a,b,c là các số thực khác 0.Tìm các số thực x,y,z khác 0 thỏa mãn:\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
cho a,b,c,x,y,z là các số thực khác 0 thỏa mãn: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\). CMR:\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
Cho a,b,c là các số thực khác 0. Tìm các số thực x,y,z khác 0 thỏa mãn: \(\frac{xy}{ay+bx}=\frac{xz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Cho a,b,c là các số thực khác 0 tìm các số thực x,y,z khác 0 thoả mãn
xy/ay+bx=yz/bz+cy=zx/cx+az=
X^2+y^2+z^2/a^2+b^2+c^2
cho các số thực a;b;c khác 0 . Tìm các số thực x;y ;z khác 0 thỏa mãn:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)