Cho \(n\in N\), p là số nguyên tố và \(a=\dfrac{2n+2}{p};b=\dfrac{4n^2+2n+1}{p}\)là các số nguyên. CMR a,b không đồng thời chính phương
a. CMR: A = căn 2 + căn 3 là số vô tỉ
b. Cho căn n là nghiệm của phương trình: x3+ax2+bx+c = 0 ( a, b, c thuộc Q ), n là số tự nhiên không chính phương. Tìm các nghiệm còn lại.
a. CMR: A = căn 2 + căn 3 là số vô tỉ
b. Cho căn n là nghiệm của phương trình: x3+ax2+bx+c = 0 ( a, b, c thuộc Q ), n là số tự nhiên không chính phương. Tìm các nghiệm còn lại
Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.
Câu 1:
a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)
b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)
Câu 2:
a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)
b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.
Câu 3:
a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.
Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)
b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:
\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.
a) Chứng minh: E, L, F thẳng hàng
b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.
Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.
Hết!
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...Cho các số nguyên dương m, n không phải là số chính phương . Giả sử a, b là các số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\)
là số hữu tỉ. CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Cho a,b,c là các số nguyên dương thỏa mãn điều kiện \(\sqrt{a}+\sqrt{b}=\sqrt{c}\). CMR nếu a,b là 2 số nguyên tố cùng nhau thì a,b,c đều là các số chính phương
CÂU I:
cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)
a,rút gọn P
b,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)
CÂU II:
1, giải phương trình: \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
2,giải hệ phương trình:
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)
CÂU III:
1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in Q\)và x2+y2+z2 là số nguyên tố
2,chứng minh rằng với n là số tự nhiên lớn hơn 1 thì 2n-1 không phải là số chính phương
CÂU IV:
cho tam giác ABC nhọn (AB<AC) nội tiếp (O;r).các đường cao AD;BE;CF cắt nhau tại H.tia EF cắt CB tại P;AP cắt (O;r) tại M(M khác A).
a,CMR:PE.PF=PM.PA
b,CMR:AM vuông góc với HM
c,cho BC cố định,điểm A di động trên cung lớn BC.Xác định vị trí của A để diện tích tam giác BHC lớn nhất
CÂU V:
cho a;b;c là các số thực dương.CMR:
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)