ddd
*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)
Nên c2≡2(mod3)c2≡2(mod3) (Vô lí)
Nên Tồn tại ab⋮3ab⋮3
*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4
Vậy từ 2 TH trên có đpcmcdvm
ddd
*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)
Nên c2≡2(mod3)c2≡2(mod3) (Vô lí)
Nên Tồn tại ab⋮3ab⋮3
*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4
Vậy từ 2 TH trên có đpcmcdvm
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
cho a, b, c là số dương thỏa mãn a+b+c=1
CMR:
a2/b+b2/c+c2/a>=3(a2+b2+c2)
Mình cần gấp ạ !!
Cho các số dương thực a, b,c thỏa mãn a2+b2+c2=3.
Chứng minh rằng:căn a^2/a^2+b+c+ căn a^2/a^2+b+c+ căn a^2/a^2+b+c lớn hơn hoặc bằng căn 3
Cho a, b, c thỏa mãn: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1 v à a + b + c = 2 . Chứng minh: a 2 + b 2 + c 2 < 2
cho a,b,c >0 , thỏa mãn : a2+b2+c2 =3 .chứng minh rằng a/b+ b/c +c/a >= 9/(a+b+c)
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3