Ta có: \(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)
Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)
Suy ra sai đề :)
Ta có: \(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)
Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)
Suy ra sai đề :)
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\ge\frac{3}{4}\)\(\ge\)3/4
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Cho a,b,c là các số dương thỏa mãn điều kiện a + b + c + ab + bc + ca = 6
Chứng minh rằng \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\ge3\) 3
Cho các số dương a, b, c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
Cho các số thực dương a,b,c thỏa mãn a2+b2+c2=12. Chứng minh rằng :
\(\frac{a+b}{4+bc}+\frac{b+c}{4+ca}+\frac{c+a}{a+ab}\ge\frac{3}{2}\)
Cho các số thực dương a , b , c thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\)
cho các số dương a,b,c thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng:
\(\frac{a}{a^2-bc+1}+\frac{b}{b^2-ac+1}+\frac{c}{c^2-ab+1}\ge\frac{1}{a+b+c}\)
Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\) Chứng minh rằng:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
Cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c\le1\).Chứng minh rằng \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(c+a\right)}\ge\frac{87}{2}\)