cho a,b,c là các số thực dương: a+b+c=1
CMR \(\frac{ab}{ab+c}+\frac{ac}{ac+b}+\frac{bc}{bc+a}\ge\frac{3}{4}.\)
cho các số dương a,b,c thỏa mãn 3(ab+bc+ac)=1. Chứng minh rằng:
\(\frac{a}{a^2-bc+1}+\frac{b}{b^2-ac+1}+\frac{c}{c^2-ab+1}\ge\frac{1}{a+b+c}\)
Cho a,b,c là các số thực dương thỏa mãn ab+ac+bc= 3. CMR:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
cho a,b,c là số thực dương. Cmr:
\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}\ge\frac{a+b+c}{ab+bc+ac}\)
cho a,b,c là số thực dương. Cmr:
\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}\ge\frac{a+b+c}{ab+bc+ac}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3abc. Chứng minh rằng :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\left[\frac{a^4}{\left(ab+1\right)\left(ac+1\right)}+\frac{b^4}{\left(bc+1\right)\left(ab+1\right)}+\frac{c^4}{\left(ca+1\right)\left(bc+1\right)}\right]\ge\frac{27}{4}\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
với 3 số a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ac=6abc
CMR : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Cho a,b, c là các số thực dương. CMR:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{a+b+c}{3}\)