Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lethienduc

Cho a,b,c là ba số thực dương thỏa mãn \(a^2+b^2+c^2\le3\)

Tìm GTNN của biểu thức \(P=\frac{1}{\sqrt{1+8a^3}}+\frac{1}{\sqrt{1+8b^3}}+\frac{1}{\sqrt{1+8c^3}}\)

Tran Le Khanh Linh
2 tháng 7 2020 lúc 21:14

Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)

Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)

Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)

Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)

Vậy Min P=1

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Châu Linh
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết
Lương Mạnh Cường
Xem chi tiết
Trần Điền
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Nguyễn Đình Thắng
Xem chi tiết
Hòa Lê Minh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết