Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1.Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
Cho 3 số thực dương a, b, c thoả mãn: ab+bc+ca=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=a^3+b^3+c^3+3abc\)
Cho a,b,c là các số dương thỏa mãn điều kiện a+b+c=3. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ca+3a^3}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện a+b+c=1
Tìm giá trị lớn nhất của biểu thức P = \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
cho a, b, c là ba số thực dương thỏa mãn điều kiện a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho a, b là 3 số thực dương thỏa mãn điều kiện ab + bc + ca = 3abc . Tìm giá trị lớn nhất của biểu thức :
\(P=\frac{1}{^{a^2+1}}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
Cho a,b,c là 3 số thực thỏa mãn a+b+c=1
Tính giá trị lớn nhất của biểu thức \(Q=\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\)
với a,b,c là các số thực dương thay đổi nhưng luôn thỏa mãn \(a^2+b^2+c^2\)≤3.CMR a+b+c≤3 và từ đó tìm giá trị lớn nhất của tổng
E=\(\dfrac{a}{\sqrt[3]{3a+bc}}+\dfrac{b}{\sqrt[3]{3b+ca}}+\dfrac{c}{\sqrt[3]{3c+ab}}\)