⇔\(a\left(b-c\right)+c\left(b-c\right)=-1\)
⇔\(\left(a+c\right)\left(b-c\right)=-1\)
TH1:\(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\)⇒\(a+b=0\) ⇒ a và b là 2 số đối nhau
TH2:\(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\)⇒ a+b=0 ( kết quả vẫn đúng như trên)
ta có
ab-ac+bc-c.c=-1
a(b-c)+c(b-c)=-1
(b-c).(a+c)=-1
để kết quả =-1 thì 1 trong hai ngoặc phải có kết quả là một số âm, mà c chung, suy ra a và b phải đối nhau