cho a b c là 3 số dương thoã mãn a+b+c=1 chứng minh rằng:
\(\dfrac{c+ab}{a+b}\)+\(\dfrac{a+bc}{b+c}\)+\(\dfrac{b+ac}{a+c}\)≥2
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
1.Cho 3 số dương a,b,c. Chứng minh rằng:
\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)≤ 3(a+b+c)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
Tìm giá trị nhỏ nhất của biểu thức: P=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
#Toán lớp 9
Cho a, b, c là các số dương. Chứng minh rằng:
\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ca}{c+a+2b}\le\dfrac{a+b+c}{4}\)
Cho `a,b,c` là các số dương thoả mãn điều kiện `a+b+c+ab+bc+ca=6`
Chứng minh rằng : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\)
Cho $a,b,c$ dương thỏa $a+b+c=6$
Chứng minh rằng \(\dfrac{ab}{6+2b+c}+\dfrac{bc}{6+2c+a}+\dfrac{ac}{6+2a+b}\le1\)
Cho a,b,c là 3 số thực dương tùy ý Chứn minh rằng
\(\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+b^2}}+\dfrac{c}{\sqrt{ac+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
Cho \(a,b,c\) là các số dương. Chứng minh: \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\)