Ta có : \(\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\); \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
\(\Rightarrow\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\right]^2}}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{a}{a+1}=\frac{b}{b+1}=\frac{c}{c+1}\\\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\end{cases}\Leftrightarrow a=b=c=\frac{1}{2}}\)
Vì \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Rightarrow\frac{1}{1+a}=2-\frac{1}{1+b}-\frac{1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\)
\(\Rightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)(Theo AM-GM cho 2 số dương)
Chứng minh tương tự,ta có:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) suy ra :
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\cdot\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le8\)
Dấu bằng xảy ra khi và chỉ khi:\(a=b=c=\frac{1}{2}\)
Vậy \(Q_{max}=8\Leftrightarrow a=b=c=\frac{1}{2}\)
Anh ơi.đừng hiểu nhầm.chẳng qua là em POST lên chậm thôi mà anh.Làm gì gắt thế ạ=((
Câu hỏi của Phạm Đức Nghĩa:đây là bằng chứng ạ:v