Cho a, b, c là ba số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
Cho a;b;c là các số thực dương thỏa mãn \(abc=1\). Chứng minh:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+c\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Bài 2:cho a ,b ,c là 3 số dương thỏa mãn abc=1 .Chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn abc=1
Chứng minh
\(\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}+\frac{1}{a^3\left(b+c\right)}\ge\frac{3}{2}\)
Cho các số dương a, b, c thỏa mãn \(a+b+c=1\). Chứng minh rằng :\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{100}{3}\)
Cho a,b,c là 3 số nguyên dương thỏa mãn abc=1 . chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Helppp!!!!
Thanks for your helppingg!!!!
cho a,b, c là 3 số thực dương. c/m: \(\left(1+\frac{a}{3b}\right)+\left(1+\frac{b}{3c}\right)+\left(1+\frac{c}{3a}\right)\ge\frac{64}{47}\)
CMR :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)
Trong đó a,b,c là các số thực dương không nhỏ hơn 1
Cho a,b,c dương thỏa mãn abc=1. CMR
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)