cho a,b,c, là 3 số dương tm đk \(a+b+c=1\)
cmr \(\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\ge\frac{1}{4}\)
cho a,b,c > 0 cmr: \(\frac{b^2a}{a^3\left(b+c\right)}+\frac{c^2a}{b^3\left(c+a\right)}+\frac{a^2b}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho 3 số thực dương a,b,c thoả mãn abc=1.CMR \(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{2}\)
Cho a,b,c dương thỏa mãn a+b+c=1
CMR
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{1}{4}\)
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng:
\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b^3}{\left(c+1\right)\left(a+2\right)}+\frac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\frac{1}{2}\)
cho a,b,c là các số thực . cmr
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\)\(\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)\)
Cho a, b, c > 0 và a + b + c = 3. CMR: \(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)