Cho a, b, c là 3 cạnh của tam giác. CMR: \(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Cho a;b;c là ba cạnh của một tam giác.
Chứng minh:\(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
1. cho a,b,c > 0.CMR :\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)\(c\)
2. cho a,b,c là 3 cạnh của tam giác cmr: \(1< \frac{a}{bc}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
Cho a ; b ; c là độ dài 3 cạnh của một tam giác .
Chứng minh : \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
Cho a, b, c là 3 cạnh của một tam giác. Cmr:
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{a-b+c}\ge a+b+c\)
a,b,c là 3 cạnh của tam giác
C/M: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\) \(\ge\)a+b+c
Cho a,b,c là độ dài 3 cạnh tam giác. CMR:
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\ge a+b+c\\ \)
a,Tìm giá trị nhỏ nhất của biểu thức: A = 2x2 + 3y2 + 4xy - 8x - 2y + 18
b, Cho a;b;c là ba cạnh của tam giác
Chứng minh: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
Gọi a,b,c là đội dài ba cạnh của một tam giác thoả mãn
\(\frac{ab}{b+c}+\frac{bc}{a+c}+\frac{ac}{a+b}=\frac{ac}{b+c}+\frac{ab}{a+c}+\frac{bc}{a+b}\)
CMR tam giác đó cân