ta có: a,b,c là 3 cạnh của 1 tam giác
=> a+b >c => a+b +c > 2c => 2 > 2c => c < 1
tương tự: a<1; b<1
=> (1-a).(1-c).(1-b) > 0
=> (1-a).(1-b-c+cb) >0
=> 1 -b -c + cb -a +ab +ac -abc >0
=> 1 + cb + ab +ac > b+c+a +abc
=> cb +ab +ac > 2 +abc -1
=> cb +ab +ac > 1+abc
=> 2cb +2ab +2ac > 2 +2abc
=> a2 + b2 + c2 + 2cb +2ab +2ac - 2 > 2abc + a2 + b2 +c2
=> (a+b+c)2 -2 > 2abc +a2 + b2 +c2
=> 22 - 2 > 2abc+ a2 + b2 + c2
=> a2 + b2 +c2 < 2 (đpcm)
Ta có:a,b,c là 3 cạnh của 1tam giác
\(\Rightarrow a+b>c\)
\(\Rightarrow a+b+c>2c\)
\(\Rightarrow2>2c\)
\(\Rightarrow c< 1\)
tương tự:\(a< 1;b< 1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Rightarrow\left(1-a\right)\left(1-b-c+ab\right)>0\)
\(\Rightarrow1-b-c+cb-a+ab+ac-abc>0\)
\(\Rightarrow1+bc+ab+ac>a+b+c+abc\)
\(\Rightarrow ab+ac+bc>2+abc-1\)
\(\Rightarrow ab+bc+ac>1+abc\)
\(\Rightarrow2bc+2ab+2ac>2+2abc\)
\(\Rightarrow a^2+b^2+c^2+2bc+2ab+2ac-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)