Cho a, b, c là số đo ba cạnh tam giác. CMR: \(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
Cho a , b , c là độ dài ba cạnh một tam giác . Chứng minh : \(abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
Cho a, b, c là độ dài 3 cạnh của tam giác.
Chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều
cm
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)với a b c là độ dài 3 canh của tam giác
Cho a,b,c là các số thực dương.
\(CMR:\left(a^2+b\right)\left(b^2+c\right)\left(c^2+a\right)\ge abc\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
Cho a, b, c là độ dài 3 cạnh của tam giác
Chứng minh:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2\ge a^3+b^3+c^3\)
Cảm ơn nhiều nhan
cho â,b,c là 3 cạnh của 1 tam giác và \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=8abc\)
cmr a,b,c là 3 cạnh của 1 tam giác đều