cho a;b;c la do dai 3 canh cua 1 tam giac . c/m voi moi x;y;z:
\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)
2. giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)
3. tim gia tri nho nhat cua: \(\frac{x+8}{\sqrt{x}+1}\)
4. tim gia tri nho nhat cua: \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
5. cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ; 0<a;b;c<1 c/m a^2+b^2+c^2+2abc<2
6. giai he phuong trinh 6(x+y)=5xy ; 12(y+z)=7zy ; 4(z+x)=3xz
7. cho a; b;c la 3 canh cua 1 tam giac c/m voi moi x,y,z \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)
8. cho x;y;z>0 thoa man x+y+z=2008 c/m \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}>hoac=2008\)
CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)
CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)
ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)
\(\Rightarrow x^2+y^2+z^2\ge1\)
\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)
TA CÓ:
\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:
\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}}
\)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)
DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
1 cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3 tim gia tri lon nhat cua x^2+y^2+z^2
2 cho a;b;c duong c/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
3 tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1
4 cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
5 tim gia tri lon nhat cua \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
6 phan tich da thuc thanh nhan tu \(y-5x\sqrt{y}+6x^2\)
7 cho x;y;z>0 xy+yz+xz=1 tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
8 cho a;b;c >0 c/m \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
1. Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Tinh \(A=\frac{x^2+y^2-z^2}{y+z}+\frac{-x^2+y^2+z^2}{z+x}+\frac{x^2-y^2+z^2}{x+y}\)
2. Cho a,b,c>0 va ab+bc+ca=1. Tinh gia tri \(A=a+b-\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{\left(1+c^2\right)}}\)
cho \(x+y+z\ne0\) và \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\) Tính \(A=2020+\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cho a là số dương tm \(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\) Tính \(P=x+y\)
Cho 3 số thực o âm a,b,c tm \(a^2+b^2+c^2=2\left(a+b+c\right)\) tím GTLN \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
Gọi a,b,c là độ dài 3 cạnh của một tam giác. C/minh với mọi x,y,z :\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)