Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
cho a,b,c khác nhau, khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) Rút gọn biểu thức: N=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
cho a,b,c khác nhau, khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Cho a,b,c đôi một khác nhau và khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn biểu thức: \(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Cho a,b,c đôi một khác nhau và khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn biểu thức:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
cho a,b,c khac nhau khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn
a) \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(B=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
c) \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
CHO \(A,B,C\in R\)VÀ ĐÔI MỘT KHÁC NHAU . VỚI \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\)
HÃY THU GỌN BIỂU THỨC SAU \(B=\frac{A^2}{A^2+2BC}+\frac{B^2}{B^2+2CA}+\frac{C^2}{C^2+2AB}\)