\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\frac{a+b}{ab}==\frac{-a-b}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=> a = - b hoặc a= - c hoặc b = - c
Với \(a=-b\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\) (1)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)(2)
Từ (1);(2) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)
Còn 2 TH nữa là b = - c và - c = a bn xét tiếp nha
Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Leftrightarrow abc+ca^2+a^2b+b^2c+abc+ab^2+c^2b+c^2a+abc=abc\)
\(\Leftrightarrow3abc+ca^2+a^2b+b^2c+ab^2+c^2b+c^2a=abc\)
\(\Leftrightarrow2abc+a^2b+a^2c+b^2c+b^2a+c^2b+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Với a + b = 0
=> a = -b
Thay vào biểu thức cần chứng minh
=> \(\frac{1}{c^3}=\frac{1}{c^3}\) (đúng)
Tượng tự với 2 trường hợp còn lại .