cho a,b,c khác 0 và x,y,z t/m: a+b+c=x+y+z=x/a+y/b+z/c=0 C/m a^2x + b^2y + c^2z =0
Ai nhanh nhất sẽ ddc 1 tik nha>.<
a. a,b,c>0, a+b=<1, tìm min P=1/(a^3+b^3)+1/(a^2.b+a.b^2)
b. a,b,c>0,a^2+b^2+c^2=1, tìm minP=a+b+c+1/abc
c. x,y,z>0,1/x+1/y+1/z=4, tìm min P=1/(2x+y+z)+1/(2y+x+z)+1/(2z+x+y)
cho các số x,y,z khác 0 thỏa mãn :
\(\frac{b^2y+c^2z}{x}=\frac{a^2z+a^2x}{y}=\frac{a^2x+b^2y}{z}=3\)và \(x+y+z\ne0\)
Tính giá trị biểu thức : \(P=\frac{\sqrt{2}}{a^2+3}+\frac{\sqrt{2}}{b^2+3}+\frac{\sqrt{2}}{c^2+3}\)
1. a,b>0, a+b<=1. tìm min P= 1/(a^3+b^3)+1/a^2b+ab^2 ( Dùng BĐT cộng mẫu cho 3 số)
2. a,b,c>0, a^2+b^2+c^2>=1. tìm min P= a+b+c+1/abc
3. x,y,z>0, 1/x+1/y+1/z=4. tìm min P= 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các hằng số và a khác -1, b khác -1, c khác -1. Chứng minh rằng nếu x=b*y+c*z; y=a*x+c*z; z=a*x+b*y; x+y+z khác 0 thì 1/(1+a)+1/(1+b)+1/(1+c)=2
1.
a) CMR: Nếu a+b+c=0 thì \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}=0\)
b) Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì:
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+2y-z}=\dfrac{c}{4x-4y+z}\)
2. Cho \(\dfrac{x}{x^2+x+1}=a\) .Tính \(M=\dfrac{x^2}{x^4-x^2+1}\)
1 Cho x,y,z > 0 . CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
2 . Cho a,b,c>0 thỏa mãn ab+bc+ac=1. CMR
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)
Bài 1: Chứng minh rằng (x, y, z > 0)
Bài 2: Cho a + b + c > 0; abc > 0; ab + bc + ca > 0. Chứng minh rằng a > 0; b > 0; c > 0.
Bài 3: Chứng minh rằng (a, b, c > 0)
Bài 4: Chứng minh rằng (a + b) (b + c) (c + a) 8abc (a, b, c 0)
Bài 5: Chứng minh rằng (a, b, c, d 0)
Bài 6: Cho x, y, z > 0 thỏa mãn .
Chứng minh .
Bài 7: Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng (a+b-c) (b+c-a) (c+a-b) ab.
Bài 8: Cho x, y, z > 0; x+y+z = 1. Chứng minh rằng .
Bài 9: Cho 2 số có tổng không đổi. Chứng minh rằng tích của chúng lớn nhất khi và chỉ khi 2 số đó bằng nhau.
Bài 10: Cho a, b, c > 0. Chứng minh rằng