- Áp dụng bđt cộng mẫu
Cho \(x_1;x_2;x_3\in R \)
\(\hept{\begin{cases}\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\left(1\right)\\\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2+x_3\right)^2}{\left(y_1+y_2+y_3\right)}\left(2\right)\end{cases}}\)
và \(y_1;y_2;y_3\in R\)
CM : +) \(\left(1\right)\Leftrightarrow\left(y_1+y_2\right)\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\right)\ge\left(x_1+x_2\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2+\frac{y_2}{y_1}x_1^2+\frac{y_1}{y_2}x_2^2\ge x_1^2+x_2^2+2x_1x_2\)
\(\Leftrightarrow\frac{y_2}{y_1}x_1^2+\frac{y_1}{y_2}x_2^2\ge2x_1x_2\)( đúng do Cauchy )
+) Để CM (2) , ta áp dụng liên tiếp 2 lần (1)
(1) (2)
\(VT\left(2\right)\ge\frac{\left(x_1+x_1\right)^2}{y_1+y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)
+) Với cách này ra có thể cm bđt " cộng mẫu " tổng quát sau :
\(\frac{x_1^2}{y_1}+......+\frac{x_1^2}{y_2}\ge\frac{\left(x_1+........+x_n\right)^2}{y_1+...........+y_n}\)
- Áp dụng bđt cộng mẫu , ta có :
\(P=\frac{\sqrt{a}^2}{2\sqrt{b}-5}+\frac{\sqrt{b}^2}{2\sqrt{c}-5}+\frac{\sqrt{c}^2}{2\sqrt{a}-5}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-15}\ge\frac{S^2}{2S-15}\)
( Trong đó \(S=\sqrt{a}+\sqrt{b}+\sqrt{c}>3\frac{5}{2}=\frac{15}{2}\))
- Đặt U = 2S - 15
+) u > 0
+) \(S=\frac{u+15}{2}\)
\(P\ge\frac{1}{4}.\frac{\left(u+15\right)^2}{u}=\frac{1}{4}\left(u+\frac{15^2}{u}+30\right)\)
\(\ge\frac{1}{4}\left(2\sqrt{u.\frac{15^2}{u}}+30\right)\left(Cauchy\right)\)
\(\ge15\)
Ta có: \(a,b,c>\frac{25}{4}\Rightarrow2\sqrt{a}-5>0,2\sqrt{b}-5>0,2\sqrt{c}-5>0\)
Áp dụng BĐT Cô-si cho 2 số dương ta có:
\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\) (1)
\(\frac{b}{2\sqrt{c}-5}+2\sqrt{c}-5\ge2\sqrt{b}\) (2)
\(\frac{a}{2\sqrt{a}-5}+2\sqrt{a}-5\ge2\sqrt{c}\) (3)
Cộng vế theo vế của (1), (2), (3) ta có: \(Q\ge5.3=15\)
Dấu '=' xảy ra <=> a=b=c=25 ( TMĐK)
Vậy Min Q =15 <=> a=b=c=25