tên sai kìa,EKAWADA CONAN mà
tên sai kìa,EKAWADA CONAN mà
Cho a,b,c là ba số khác nhau đôi một và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Chứng minh rằng nếu a,b,c khác nhau đôi một thì
b. \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)nếu \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho a, b, c khác 0 và khác nhau thỏa mãn a + b + c = 0. Chứng minh rằng :
\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
cho a, b, c là 3 số đôi một khác nhau thỏa mãn :
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
Chứng minh rằng: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0
Chứng minh rằng: \(\frac{a}{\left(b-c^2\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
1. Cho a, b, c đôi một khác nhau và khác 0. Chứng minh rằng: nếu a+b+c=0 thì \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
2. Cho A= \(p^4\)trong đó p là số nguyên tố. Tìm các giá trị của p để tổng các ước dương của A là số chính phương
Cầu ng giúp
Cho \(a,b,c\ne0;a+b+c=0\)và khác nhau từng đôi một.Chứng minh :
\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
cho 3 số a,b,c khác 0 và đôi một khác nhay và thỏa mãn a+b+c=0. tính giá trị biểu thức P= \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)