Kuroba Kaito

Cho ABC có ba góc nhọn với các đường cao AD, BE, CF cắt nhau tại H. CMR: \(\frac{AH}{BC}+\frac{BH}{AC}+\frac{CH}{AB}\ge\sqrt{3}\)

Ngô Chi Lan
4 tháng 10 2020 lúc 14:51

Date cái hình ra đây đã, bài này "dễ" không ấy mà:))

A B C D E F H

Bài làm:

Ta có: 

\(S_{AHB}=\frac{1}{2}\cdot AH\cdot BD\) , mà \(\sin\widehat{BHD}\cdot BH=\frac{BD}{BH}\cdot BH=BD\)

=> \(S_{AHB}=\frac{1}{2}\cdot AH\cdot BH\cdot\sin\widehat{BHD}\left(1\right)\)  

\(S_{ABC}=\frac{1}{2}\cdot AC\cdot BE\) , mà \(\sin\widehat{ECB}\cdot BC=\frac{BE}{BC}\cdot BC=BE\)

=> \(S_{ABC}=\frac{1}{2}\cdot AC\cdot BC\cdot\sin\widehat{ECB}\left(2\right)\)

Dễ dàng CM được: Δ BDH ~ Δ BEC (g.g) => \(\widehat{BHD}=\widehat{ECB}\Rightarrow\sin\widehat{BHD}=\sin\widehat{ECB}\)

Chia vế (1) cho (2) ta được:

=> \(\frac{S_{AHB}}{S_{ABC}}=\frac{AH\cdot BH}{BC\cdot AC}=\frac{AH}{BC}\cdot\frac{BH}{AC}\) 

Tương tự ta CM được: \(\frac{S_{CHA}}{S_{ABC}}=\frac{CH}{AB}\cdot\frac{AH}{BC}\) và \(\frac{S_{BHC}}{S_{ABC}}=\frac{BH}{AC}\cdot\frac{CH}{AB}\)

Cộng vế 3 BĐT trên lại ta được: \(\frac{S_{AHB}+S_{AHC}+S_{BHC}}{S_{ABC}}=\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}\)

=> \(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{AC}\cdot\frac{CH}{AB}=\frac{S_{ABC}}{S_{ABC}}=1\)

Tiếp theo ta CM bất đẳng thức phụ: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\) (nhân 2 vào cả 2 vế)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\forall a,b,c\right)\) luôn đúng

Dấu "=" xảy ra khi: \(a=b=c\)

Từ đó ta áp dụng vào CM bài toán: 

\(\left(\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\right)^2\ge3\left(\frac{AH}{BC}\cdot\frac{BH}{CA}+\frac{AH}{BC}\cdot\frac{CH}{AB}+\frac{BH}{CA}\cdot\frac{CH}{AB}\right)=3\cdot1=3\)

\(\Rightarrow\frac{AH}{BC}+\frac{BH}{CA}+\frac{CH}{AB}\ge\sqrt{3}\)

Dấu "=" xảy ra khi: \(\frac{AH}{BC}=\frac{BH}{CA}=\frac{CH}{AB}\Rightarrow AH=BH=CH\)

=> Tam giác ABC đều

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Văn Quân
Xem chi tiết
Trần Văn Quân
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Phạm Hà Chi
Xem chi tiết
Vo Trong Duy
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
ha tuan anh
Xem chi tiết
Trần Tuấn Trọng
Xem chi tiết
Trần Tuấn Trọng
Xem chi tiết