\(Có.\widehat{BAC}=135^0\\ \Rightarrow\widehat{BAX}=180^0-\widehat{BAC}=180^0-135^0=45^0\\ Có.\widehat{BAD}+\widehat{DAC}=\widehat{BAC}=135^0\\ \Rightarrow\widehat{BAD}=45^0\Rightarrow\widehat{BAX}=\widehat{BAD}\\ \Rightarrow AB.là.phân.giác.\widehat{xAD}\)
Áp dụng định lí phân giác
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}AC\)
Áp dụng pytago
\(DC^2=AD^2+AC^2\\ \Rightarrow\left(\dfrac{3}{4}AC\right)^2+AC^{^2}=5\\ \Rightarrow AC=\sqrt{16}=4\left(cm\right)\\ \Rightarrow AD=\dfrac{3}{4}.4=3\left(cm\right)\)