Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0
=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2
=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)
=>a4+b4+c4= 2(a2b2+b2c2+c2a2)
Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0
=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2
=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)
=>a4+b4+c4= 2(a2b2+b2c2+c2a2)
Cho a + b + c = 0. Chứng minh a^4 + b^4 + c^4 bằng mỗi biểu thức:
a) 2(a^2b^2 + b^2c^2 + c^2a^2)
b) 2( ab + bc + ca)^2
c) (a^2 + b^2 + c^2)^2 / 2
Bài 3: Cho a + b + c = 0. Chứng minh a^4 + b^4 + c^4 bằng mỗi biểu thức:
a) 2(a^2b^2 + b^2c^2 + c^2a^2)
b) 2( ab + bc + ca)^2
c) (a^2 + b^2 + c^2)^2 / 2
Cho biểu thức P =\(\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2a+2c-b\right)^2\)
1) Chứng minh P =\(9\left(a^2+b^2+c^2\right)\)
2)Nếu a,b,c là các số thực thỏa mãn ab + bc + ca = -1, tìm giá trị nhỏ nhất của biểu thức P
cho a+b+c=0 . CMR a, ( ab+bc+ca)^2 = a^2b^2+b^2c^2+c^2a^2 b, a^4+b^4+c^4=2(ab+bc+ca)^2
b1. cho a+b+c=0. Chứng minh rằng:
a) (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b) a^4+b^4+c^4=2(ab+bc+ca)^2
b2. Chứng minh các đẳng thức sau:
a) (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
b)100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
b3. tìm x biết:
a) (2x-3)^2+(3x-1)^2=13(x-1)(x+3)
b)(3x-5)^2-2(2x+1)^2=(x-1)(x+2)
c)(x+1)(x-1)(x^2+1)-(x+3)(x-3)(x^2+9)=5
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
\(Cho\) \(a+b+c=0\)
Chứng minh
a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)
b) \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Nhanh nhaaaaa
Cho a+b+c=0 CMR
1. a^4 + b^4 + c^4 = 2( a^2b^2 + b^2c^2 + c^2a^2 )
2. a^4 + b^4 + c^4 = 2( ab + bc + ca )^2
3. a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 /2
cho a+b+c=2;chứng minh rằng (2-c)(b-c)/2a+bc+(2-a)(c-a)/2b+ca+(2-b)(a-b)/2c+ab lớn hơn hoặc bằng 0