Hmm...
Ta đánh giá:
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}.\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\sqrt{a}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) (Áp dụng BĐT Bunhia)
Tương tự CM được:
\(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) ; \(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng vế 3 BĐT trên lại ta được:
\(Vt\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Dấu "=" xảy ra khi: \(a=b=c\)
Ko hiểu chỗ nào ib riêng:)
Ta có \( {\displaystyle \displaystyle \sum }cyc\)\(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}\)\(=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)
Áp dụng bất đẳng thức AM-GM có \(\hept{\begin{cases}a^2+b^2+2\left(ab+bc+ca\right)\ge2\left(ab+bc\right)+2\left(ab+ca\right)\\a+b\ge2\sqrt{ab}\end{cases}}\)
Do đó ta có \(\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{1}{2}\Sigma_{cyc}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)
\(\le\frac{1}{4\sqrt{2}}\Sigma_{cyc}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}\le\frac{1}{4\sqrt{2}}\sqrt{3}\sqrt{\Sigma_{cyc}\left(\frac{ab}{ab+bc}+\frac{ab}{ab+ca}\right)}\)
Đẳng thức xảy ra khi a=b=c=\(\frac{1}{3}\)
@godatakeshidang
Đoạn Đánh giá có thể lm kĩ hơn không:D
bổ sung thêm đoạn cuối \(=\frac{1}{4\sqrt{2}}\cdot\sqrt{3}\cdot\sqrt{3}=\frac{3\sqrt{2}}{8}\)
Đoạn đánh giá chỉ cần dùng BĐT Bunhia là ra thôi ạ:)
Ta có: \(\left(\sqrt{ab}+\sqrt{ac}\right)^2\le\left(a+b\right)\left(a+c\right)\)
=> \(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)
<=> \(a+\sqrt{\left(a+b\right)\left(a+c\right)}\ge a+\sqrt{ab}+\sqrt{ac}\)
=> \(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự bạn CM 2 cái còn lại nhé:)
Đào Thị Hải Anh copy nhầm chỗ à bạn ?