a/ \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\Leftrightarrow a^2b+bc^2\ge2abc\)
\(\Leftrightarrow a^2b+bc^2-2abc\ge0\)
\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2\ge0\)(đúng)
\(\RightarrowĐPCM\)
b/ Áp dụng câu a ta có
\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 3 cái đó vế theo vế được
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)