Xem lại đề đi bạn ơi !
Mk nghĩ đề là : cm 1/2-a + 1/2-b + 1/2-c >= 3
Nếu nói gì sai thì thông cảm nha
Xem lại đề đi bạn ơi !
Mk nghĩ đề là : cm 1/2-a + 1/2-b + 1/2-c >= 3
Nếu nói gì sai thì thông cảm nha
cho a,b,c >0 va abc=1 c/m
\(\frac{1+ab^2}{c^3}+\frac{1+bc^2}{a^3}+\frac{1+ca^2}{b^3}>=\frac{18}{a^3+b^3+c^3}\)
cho a,b,c >0 va abc=1.
CMR \(\frac{1}{ab+a+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
1/ Cho a. b. c>0 và a+b+c= 1
CM: \(P=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)< \frac{1}{64}\)
2/ Cho x, y, z> 0 thỏa \(x^3+y^3+z^3=1\)
CM: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)
3/ Cho x,y >0 và\(x+y\le1\)
CM: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge4\)
4/ Cho a, b, c là 3 cạnh tam giác
a) CM: \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
b) CM: \(a^3+b^3+c^3\ge3abc\)
5/ Cho tam giác ABC có các cạnh \(a\ge b\ge c\)
CM: \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
6/ Cho \(x,y\ge1\)
CM: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
cho a,b,c > 0 va abc =1 tim max
\(\frac{a}{b^2+c^2+a}+\frac{b}{c^2+a^2+b}+\frac{c}{a^2+b^2+c}\)
Cho a, b, c > 0
a) CM: \(\frac{a^2}{b+c}+\frac{b^2}{b+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
b) CM: \(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{a^2+c^2}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a, b, c > 0 thỏa abc=1
CM : :\(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ac+c+2}}\le\frac{3}{2}\)
cho a,b,c khac 0 va a+b+c=0 . tinh Q=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)
cho 1/a+1/b+1/c=2 va :a+b+c=abc .chung minh rang: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a+b+c=0 va a,b,c≠0. Chứng minh đẳng thức:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)=\(\text{|}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\text{|}\)