Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
Cho a, b , c thỏa mãn \(\hept{\begin{cases}0< =a< =b< =1\\2a+b< =2\end{cases}}\). CMR \(2a^2+b^2< =\frac{3}{2}\)
có bao nhiêu bộ ba số nguyên a,b,c thỏa mãn hệ
\(\hept{\begin{cases}ab+bc+ca=0\\\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{4}=0\end{cases}}\)
Tính giá trị biểu thức \(P=a^{2009}+b^{2009}+c^{2009}\)
Trong đó a,b,c là các số thực khác 0 thỏa mãn các điều kiện
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Ta có:\(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(=-1\)
TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c\)
Ta có: \(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=2.2.2=8\)
Vậy .... ( ko bít ghi kiểu gì luôn -.- )
cho a,b,c,x,y,z thỏa mãn: \(\hept{\begin{cases}a^2+ab+b^2=x\\b^2+bc+c^2=y\\c^2+ac+a^2=y\end{cases}}\)
tính \(A=\left(ab+bc+ca\right)^2\)theo x,y,z
Cho 3 số a;b;c thỏa mãn
\(\hept{\begin{cases}a+b+c=-2\\a^2+b^2+c^2=2\end{cases}}\)
\(CMR:\frac{-4}{3}\le a;b;c\le0\)
Cho \(\hept{\begin{cases}a+b\ne0\\c\ne0\\c^2=2\left(ac+bc-ab\right)\end{cases}}\)CMR:\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Cho x,y thỏa \(\hept{\begin{cases}b\ne c\\b\ne a+c\\c^2=2\left(bc+ab-ac\right)\end{cases}}\)Chứng minh rằng: \(\frac{a^2+\left(a+c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a+c}{b-c}\)
Cần lắm một lời giải...