Giả sử \(1+a\ge b+c\)
Ta có \(1+a^3=b^3+c^3\)
\(\Leftrightarrow\left(1+a\right)\left(a^2-a+1\right)=\left(b+c\right)\left(b^2-bc+c^2\right)\)
\(\Leftrightarrow\frac{a^2-a+1}{b^2-bc+c^2}=\frac{b+c}{1+a}\le1\)
\(\Rightarrow a^2-a+1\le b^2-bc+c^2\)
\(\Leftrightarrow\left(a+1\right)^2-3a\le\left(b+c\right)^2-3bc\)(Vô lí vì giả sử a+1 > b+c và giả thiết a<bc)
Vậy điều giả sử là sai nên ta có dpcm