1/Cho a,b,c>0 thoả \(a+b+c=abc\) .Chứng minh \(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\le\frac{3}{2}\)
2/Tìm các số nguyên tố p thoả mãn \(P^2+23\) có đúng 6 ước dương
cho a,b,c thoả mãn a,b,c>0 và a+b+c<=1. tìm GTNN của a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2
Cho \(a,b,c>0\) thoả mãn abc=1
Chứng minh \(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)
Cho ba số thực a,b,c khác 0 thoả mãn a(1/b+1/c)+ b(1/c+1/a)+ c(1/a+1/c)= -2. Chứng minh rằng (a+b)(b+c)(c+a)=0
cho a,b,c.>0 thoả mãn ab+bc+ac=1. CMR
\(\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2+\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2\ge8\sqrt{3}abc\)
Cho a;b;c>0 thoả mãn: \(\frac{1}{1+a}+\frac{2}{2+b}+\frac{3}{3+c}\le1\) 1. Tìm min S=abc
cho 3 số a,b,c>0 thoả mãn \(a+b+c+2\sqrt{abc}=1\). Hãy tính: \(A=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-c\right)\left(1-a\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}\)
Cho a,b,c > 0 thoả mãn : 1/a + 1/b + 1/c = 3
Tìm Max của A = 2/2a+b+c + 2/2b+c+a + 2/2c+a+b
Cho a,b,c dương thoả mãn abc=1. CMR
\(\frac{1}{1+a+b^2}+\frac{1}{1+b+c^2}+\frac{1}{1+c+a^2}\le1\)