Ta có:a+b+c=0
=>a+b=-c
=>(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
=>a^3+3a^2b+3ab^2+b^3+c^3=0
=>a^3+b^3+c^3+3ab(a+b)=0
=>a^3+b^3+c^3+3ab(-c)=0
=>a^3+b^3+c^3-3abc=0
=>a^3+b^3+c^3=3abc (đpcm)
Ta có:
a^3+b^3+c^3−3abc=(a+b)^3−3a^2b−3ab^2+c^3−3abc=[(a+b)^3+c^3]−3ab(a+b+c)
=(a+b+c)[(a+b)^2−(a+b)c+c^2]−3ab(a+b+c)=0
-> a^3+b^3+c^3=3abc
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3ac(a+b+c)+3bc(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc
Ta có: \(a+b+c=0 \)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ca\left(a+b+c\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3bc\left(a+b+c\right)+3ca\left(a+b+c\right)=3abc\)
Mà \(a+b+c=0\) nên:
\(\Rightarrow a^3+b^3+c^3+0+0+0=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)(đpcm)