Cho a+b+c=a^2+b^2+c^2=2 và a.b.c khác 0. CMR: 1/a+1/b+1/c=1/(a.b.c)
cho a.b.c=1
và a+b+c>1/a+1/b+1/c
cmr (a-1)(b-1)(c-1)>0
Cho a.b.c=1. a,b,c>0.
CMR(a+1)(b+1)(c+1)\(\ge\)8
Cho a,b,c>0 thỏa mãn a.b.c=1
CMR:\(\frac{1}{a.b+a+2}+\frac{1}{b.c+b+2}+\frac{1}{a.c+c+2}\le\frac{3}{4}\)
Cho a,b,c >0 thỏa mãn a.b.c=1. CMR
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cho a.b.c=0 và a+b+c=0. Chứng minh: $\frac{1}{b^2+c^2-a^2} + \frac{1}{c^2+a^2-b^2} + \frac{1}{a^2+b^2-c^2} = 0
Cho tích \(a.b.c=1\) và \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
CMR: \(\left(a-1\right).\left(b-1\right).\left(c-1\right)>0\)
cho a.b.c là số đo 3 cạnh của 1 tam giác . CMR
\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
Cho a.b.c =1 và a+b+c>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . CM (a-1).(b-1).(c-1)>0