\(P=\frac{a^3.b^3+b^3.c^3+c^3.a^3}{3\left(abc\right)^2}\)
\(P=\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3}{3\left(abc\right)^2}\)
\(P=\frac{0}{3\left(abc\right)^2}\)
\(P=0\)
\(P=\frac{a^3.b^3+b^3.c^3+c^3.a^3}{3\left(abc\right)^2}\)
\(P=\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3}{3\left(abc\right)^2}\)
\(P=\frac{0}{3\left(abc\right)^2}\)
\(P=0\)
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
Cho 3 số a,b,c thỏa mãn abc=1 và a^3=36. cm: a^2/3 b^2 c^2 > ab bc ca
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
cho các số a,b,c thoả mãn a+b+c+ab+bc+ca+abc=0
tính P=\(\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ca}\)
Cho 3 số a,b,c thỏa mãn abc= 1 và a^3>36 .CMR:
a^2/3 + b^2 + c^2 > ab + bc + ca
Cho abc=1 va a^3>36
CMR a^3/3 + c^2 +b^2>ab+bc+ca
Cho \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=1006\)
Tính \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Phân tích đa thức thành nhân tử.
1, a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
2, (a+b+c)(ab+bc+ca)-abc
3, a(a+2b)^3-b(2a+b)^3
Cho ba cạnh của tam giác ABC là a,b,c Chứng minh tam giác ABC đều với các đẳng thức sau
a)(a+b+c)^2=3(ab+bc+ca)
b)a^3+b^3+c^3-3abc=0
c)(a+b)(b+c)(c+a)=8abc