\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{16}\)
Ta có: \(\frac{1}{a^2+b^2}+\frac{2}{ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{3}{2ab}+384ab-383ab\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{3}{2ab}.384ab}-383.\frac{1}{16}\)
\(=\frac{4}{\left(a+b\right)^2}+2.24-\frac{383}{16}=\frac{641}{16}\)
Dấu "=" xảy ra <=> a = b = 1/4