Cho a>0, b>0 và a+b=1
Tìm giá trị nhỏ nhất của Q= a3+b3+\(\frac{4}{ab}\)-ab
Cho a và b là các số thực thỏa mãn các điều kiện
\(6a^2+20a+15=0;15b^2+20b+6=0;ab\ne1\)
CMR: \(\frac{b^3}{ab^2-9\left(ab+1\right)^3}=\frac{6}{2015}\)
1) Tìm STN a lớn nhất
a) 128 chia hết cho
b, 48 chia hết cho a
và 192 chia hết cho a
2) Tìm STB b khác 0, biết
a) 300 chia hết cho
b, 276 chia hết cho b
và 252 chia hết cho b
3) Tìm STN n khác 0, biết 311 : n dư 11
và 289 : n dư 13
4) CMR 2n+1 và 6n + 5 là 2 số nguyên tố cùng nhau
5) Tìm a,b biết
a) a+b=72 và ƯCLN(a,b) = 6
b) a-b=100 và ƯCLN(a,b)= 6
1) Tìm STN a lớn nhất
a) 128 chia hết cho
b, 48 chia hết cho a
và 192 chia hết cho a
2) Tìm STB b khác 0, biết
a) 300 chia hết cho
b, 276 chia hết cho b
và 252 chia hết cho b
3) Tìm STN n khác 0, biết 311 : n dư 11
và 289 : n dư 13
4) CMR 2n+1 và 6n + 5 là 2 số nguyên tố cùng nhau
5) Tìm a,b biết
a) a+b=72 và ƯCLN(a,b) = 6
b) a-b=100 và ƯCLN(a,b)= 6
AI ĐÚNG MK TẶNG 3 K NHA
Cho hthang ABCD(AB song song CD).Gọi I là giao điểm của 2 đường chéo AC và BD. Vẽ qua I đường thẳng song song AB cắt AD và BC lần lượt tại E và F. CM:
a)IE=IF
b)2/EF=1/AB+1/CD
Cho a,b,c thỏa mãn a+b+c = 0 và ab+bc+ca =0
Tính giá trị của biểu thức A=(a-1)^2+b^2+c(c+1)
Câu 1. Cho đoạn thẳng AB. Trong cùng một nửa mặt phẳng có bờ là đường thẳng AB, vẽ hai tia Ax và By vuông góc với AB tại A và B. Trên đoạn thẳng AB lấy điểm M (khác A, B). Trên tia Ax, lấy điểm C (khác A, CA < CM), tia vuông góc với MC tại M cắt By tại D.
a) Chứng minh rằng:DAMC đồng dạng với DBMD.
b) Đường thẳng CD cắt AB tại E. Chứng minh rằng: EA.BD = ED.AC
c) Vẽ MH vuông góc với CD tại H. Chứng minh:HM2 = HC.HD
d) Gọi I là giao điểm của BC và AD. Chứng minh: DE.IA = ID.EC
Câu 2. Cho DABC có ba góc nhọn, AB < AC , đường cao AH và trung tuyến AD. Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F. Chứng minh:
a) DABH ∽DDBE
b) AC.DF = AH.DC
c) DE = AC
DF AB
Câu 3. Cho D ABC vuông tại A có AB = 8cm, AC = 6cm.
a) Vẽ đường cao AH. Chứng minh: D ABC D HBA.
b) Qua C vẽ đường thẳng song song với AB và cắt AH tại D. Chứng minh: D AHB D DHC.
c) Chứng minh : AC2 = AB. DC
d) Tứ giác ABDC là hình gì? Vì sao? Tính diện tích của tứ giác ABDC.
Câu 4. Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm và hai đường chéo cắt nhau tại O. Qua B kẻ đường thẳng a vuông góc với BD, a cắt DC kéo dài tại E.
a) Chứng minh: DBCE DDBE.
b) Tính tỉ số SBCE,SDBE
c) Kẻ đường cao CF của DBCE . Chứng minh :AC. EF = EB. CF
Câu 5. Cho tam giác ABC vuông tại A có AH là đường cao(H Î BC ) .
a) Chứng minhD AHB ∽DCHA .
b) Trên tia đối của tia AC lấy điểm D, vẽ AE vuông góc với BD tại E.Chứng minh D AEB ∽D DAB .
c) Chứng minh.BD = BH.BC .
d) Chứng minh BHE = BDC .
cho a và b là hai số thực thỏa mãn 4a2 + b2 = 5ab và 2a>b>0
tính giá trị của biểu thức \(\frac{ab}{4a^2-b^2}\)
1,cho số nguyên tố p(p>3) và 2 sô nguyên dương a,b sao cho p^2 + a^2=b^2. chứng minh a chia hết cho 12 và 2(p+a+1) là số chính phương
2, cho x,y,z >=0 thỏa mãn x^2+y^2+z^2=1. tìm GTLN và GTNN của biểu thức: T= x/(1-yz) + y/(1-zx) + z/(1-xy)
giúp mình với ạ!!
cần gấp