từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1
từ giả thiết chuyển vế phân tích thành nhân tử ta đc (a-b)(2a-b)=0=>a=2b(do a>b>0)=.P=1
cho a>b>0 và \(2\left(a^2+b^2\right)=5ab\)
Tính giá trị của biểu thức \(A=\frac{3a-b}{2a+b}\)
Cho \(a>b>0\)và \(2\left(a^2+b^2\right)=5ab\)
Tính giá trị của biểu thức: \(P=\frac{3a-b}{2a+b}\)
Choa>b>0 và \(2\left(a^2+b^2\right)=5ab\) tính giá trị biểu thức P=\(\frac{3a-b}{2a+b}\)
Cho biểu thức: A=\(\left(\frac{1}{2a+b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right)\times\)\(\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
a) Rút gọn A
b) Tính giá trị A biết 4a2+b2= 5ab và a>b>0
Cho a>b>0 và 2(a2+b2)=5ab. tính giá trị biểu thức \(P=\frac{3a-b}{2a+b}\)
tính giá trị biểu thức (2a-b)/(3a-b)+(5b-a)/(3a+b)-3 biết 10a^2-3b^2-5ab=0 và 9a^2-b^2 khác 0
cho 10a2-3b2+5ab=0 và 9a2-b2 khác 0 tính giá trị biểu thức Q= \(\frac{2a-b}{3a-b}\)+ \(\frac{5b-a}{3a+b}\)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
tính giá trị của biểu thức
Cho \(4a^2+b^2=\text{5ab}\) và \(2a>b>0\) , tính giá trị của A \(=\dfrac{ab}{4a^2-b^2}\)