Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Cho a,b>0 và a+b=1. Tìm Min F=2/ab + 1/(a2+b2) + (a4+b4)/2
cho a,b,c>0,a+b+c=1 tìm max F=abc(a2+b2+c2)
cho F=\(\dfrac{3+2a^2}{a}\) tìm min F biết a)a>0 b)a>=2 c)0<a<=1/2
cho a+b=2 a,b>0 tìm min F=\(\dfrac{a^2}{a+1}\)+\(\dfrac{b^2}{b+1}\)
1.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab
2.cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/2ab
3. cho a,b >0, a+b<=1. tìm min P= (1/a^2+b^2)+1/ab+4ab
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74
cho a,b,c>0 và a+b+c=1. tìm min F= \(\frac{a}{1+b-a}\)+\(\frac{b}{1+c-b}\)+\(\frac{c}{1+a-c}\)
Cho a, b, c là các số thực dương thỏa mãn b2 + c2 ≤ a2. Tìm Min:\(M=\dfrac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
cho a;b >0 và a+b\(\ge\)1.tìm min F=\(\left(a^3+b^3\right)^2+a^2+b^2+\frac{3}{2}ab\)