3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
a) cho a là số thực dương cmr : \(a+\frac{1}{4a}\ge1\)
b) chó x>0 cmr tìm GTNN:\(\frac{16x^2-12x^2+1}{4x}+2018\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
\(P=\frac{a^2}{b-1}+\frac{b^2}{a-1}=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a-1}+4\left(a-1\right)-4\left(a-1\right)-4\left(b-1\right)\)
\(P\ge4a+4a-4a-4a+4+4=8\)(Cô si nhé )
Dấu = xảy ra khi a=b=2
FOR LÊ DUNG =))
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho các số thực dương a;b;c thỏa mãn \(4a+3b+4c=22\). Tìm GTNN của biểu thức:
\(P=a+b+c+\frac{1}{3a}+\frac{2}{b}+\frac{3}{c}\)?
Cho a dương. Tìm giá trị nhỏ nhất của biểu thức P=4a2-3a+\(\frac{1}{4a}\)+2018
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
Rút gọn biểu thức A = \(a-\left(\frac{\left(16-a\right).a}{a^2-4}+\frac{3+2a}{2-a}+\frac{2-3a}{a+2}\right):\frac{a-1}{a^3+4a^2+4a}\)