vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống
vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống
Cho a,b>0 tm a+b=4ab Cm \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)
cho a;b;c là các số thực dương thỏa mãn \(a^2+b^2+c^2=\frac{1}{3}\)CMR:\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}\ge a+b+c\)
Cho a;b >0 thỏa mãn : \(12\ge\left(a+b\right)^3+4ab\). CMR:
\(\frac{1}{a+1}+\frac{1}{b+1}+2017ab\le2018\)
Cho a,c,b dương thỏa mãn \(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2+b^2+c^2}\right)\)
CMR \(\frac{1}{4A+B+C}+\frac{1}{4B+A+C}+\frac{1}{AC+A+B}\le\frac{1}{6}\)
Cho 3 số thực dương a, b, c thỏa mãn: \(12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
CMR: \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{6}\)
cho a;b;c>0 thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3.\)CMR:
\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)
Cho a;b;c > 0 thỏa mãn a + b + c = 1
CMR: \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho a, b, c > 0 thỏa mãn ab + bc + ca = 3. CMR :
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)