sửa lại tí nha
Cho a,b>0 thoa mãn ab>2015a+2016b. CMR: \(a+b>\left(\sqrt{2015}+\sqrt{2016}\right)^2\)
sửa lại tí nha
Cho a,b>0 thoa mãn ab>2015a+2016b. CMR: \(a+b>\left(\sqrt{2015}+\sqrt{2016}\right)^2\)
Bai 1:cho a,b,c la do dai 3 canh tam giac
CMR a^2016/b+c-a + b^2016/c+a-b + c^2016/a+b-c >= a^2015 +b^2015+c^2015
Bai 2;cho a,b,c la cac so thuc thoa man:0<=a,b,c<=4 va a+b+c=6
tim GTLN P=a^2+b^2+c^2 +ab+bc+ca
Cho 3 số thực dương a;b;c thỏa mãn \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2015\)
Tìm GTLN của \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho a,b,c thỏa mãn:
\(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\); a,b,c > 0
Tính biểu thức \(A=\left(a-b\right)^{15}+\left(b-c\right)^{2015}\left(a-c\right)^{2016}\)
Cho a,b,c là các số thực thỏa mãn: \(a^2+b^2+c^2=ab+bc+ca\)
Tính giá trị biểu thức P=\(\left(a-b\right)^{2015}+\left(b-c\right)^{2016}+\left(c-a\right)^{2017}\)
Đố bạn nào làm hết đc các câu này mik cho 5 tick hoặc 1 câu 1 tick cố lên nha :)) HELP ME
Câu 1: Cho \(x^2+xy+y^2=5\)
Tính giá trị biểu thức: A=\(x^4+y^4\left(x+y\right)^4\)
Câu 2: Cho a+b+c+d=0.CMR:
\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Câu 3:Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\)
CM: \(a^3-3ab+2c=0\)
Câu 4: Cho a,b,c>0 thỏa mãn \(a^{2016}+b^{2016}+c^{2016}=a^{1008}b^{1008}+b^{1008}c^{1008}+c^{1008}a^{1008}\)
Tính giá trị biểu thức A=\(\left(a-b\right)^{15}+\left(b-c\right)^{2015}+\left(a-c\right)^{2016}\)
Cho a,b,c là ba số thực dương, thoả mãn: \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
1,cho a,b,c là các sô thực dương thỏa mãn ab+a+b=1.CMR:
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}\)
cho hai số thực không âm a,b thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
CMR:\(ab\left(a+b\right)^2< =\frac{1}{64}\)
Cho 3 số a,b,c thỏa mãn:
\(2a^2+2b^2+c^2+2ab-2ac-2bc-2a+2b+2=0\)
Tính \(A=\left(x-y\right)^{2015}-\left(b+2\right)^{2015}+c^{2015}\)