cho a.b thoả mãn a\(^3\) + 2b\(2\) -4b + 3 = 0 và a\(2\) + a\(2\)b\(2\) - 2b = 0 tính a\(2\) + b\(2\)
cho |a| khác |b| và ab khác 0 thoả mãn (a−b)/(a^2+ab) + (a+b)/(a^2−ab) = (3a−b)/(a^2−b^2).Tính B=(a^3+2a^2b+3b^2)/(2a^3+a^2b+b^3)
Cho a và b thỏa mãn \(\hept{\begin{cases}a^3+2b^2-4b+3=0\\a^2+a^2b^2=2b\end{cases}}\)
Tính \(a^{2018}+b^{2019}\)(Đây chỉ là toán lớp 8)
cho a;b thỏa mãn a3+2b2-4b+3=0 và a2+a2b2-2b=0
tính a2005+b2005
~~~~~~~~GIÚP MK VS CHIỀU NAY MK PHẢI ĐI HỌC RỒI~~~~~~~~~~~~~
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
cho |a| khác |b| và ab khác 0 thoả mãn \(\frac{a-b}{a^2+ab}\) +\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
cho |a| ≠ |b| và ab ≠ 0 thoả mãn \(\frac{a-b}{a^2+ab}\)+\(\frac{a+b}{a^2-ab}\)=\(\frac{3a-b}{a^2-b^2}\)
Tính B=\(\frac{a^3+2a^2b+3b^2}{2a^3+a^2b+b^3}\)
Cho a,b thỏa mãn a3 - a2 + a=0 và b3 - 2b2 + 2b=0.
Tìm a,b
Cho a,b,c thỏa (a+2b)(2b+3c)(3c+a)#0 và
\(\frac{a^2}{a+2b}+\frac{4b^2}{2a+3b}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{3c+a}+\frac{9c^2}{a+2b}\)
chứng minh rằng \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\).mấy a giải giúp em cái