Biểu thức này chỉ có max khi a;b là số thực dương, đề bài thiếu
Bunhiacopxki:
\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{a^3+b}\le\dfrac{\dfrac{1}{a}+b}{\left(a+b\right)^2}=\dfrac{ab+1}{a\left(a+b\right)^2}\)
Tương tự: \(\dfrac{1}{b^3+a}\le\dfrac{ab+1}{b\left(a+b\right)^2}\)
\(\Rightarrow P\le\left(a+b\right)\left(\dfrac{ab+1}{a\left(a+b\right)^2}+\dfrac{ab+1}{b\left(a+b\right)^2}\right)-\dfrac{1}{ab}\)
\(P\le\left(a+b\right).\dfrac{ab+1}{\left(a+b\right)^2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{a+b}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}\)
\(P\le\dfrac{ab+1}{a+b}\left(\dfrac{a+b}{ab}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{ab}-\dfrac{1}{ab}=1+\dfrac{1}{ab}-\dfrac{1}{ab}=1\)
Dấu "=" xảy ra khi \(a=b=1\)