Cho a,b là 2 các só nguyên dương thỏa mãn \(\frac{ab+1}{a+b}< \frac{3}{2}\) . Tìm giá trị lớn nất của biểu thức P= \(\frac{a^3b^3+1}{a^3+b^3}\)
cho a,b,c là các số dương thay đổi thỏa mãn
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=2017\)
tìm giá trị lớn nhất của biểu thức
\(P=\frac{1}{2a+3b+3c}+\frac{1}{3a+2b+3c}+\frac{1}{3a+3b+2c}\)
cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìn giá trị lớn nhất của \(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\)
Cho a,b,c là các số dương thỏa mãn điều kiện a+b+c=3. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ca+3a^3}\)
a)Chứng minh rằng :
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
b) cho a,b,c là 3 số dương thỏa mãn điều kiện \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=2\)
tìm giá trị lớn nhất của tích (a+b)(b+c)(c+a)
Cho hai số thực dương a và b thay đổi thỏa mãn đồng thời các điều kiện:
\(|a-2b|\le\frac{1}{\sqrt{a}},|b-2a|\le\frac{1}{\sqrt{b}};\)Tìm giá trị lớn nhất của tích ab.
với a,b,c là các số thực dương thay đổi nhưng luôn thỏa mãn \(a^2+b^2+c^2\)≤3.CMR a+b+c≤3 và từ đó tìm giá trị lớn nhất của tổng
E=\(\dfrac{a}{\sqrt[3]{3a+bc}}+\dfrac{b}{\sqrt[3]{3b+ca}}+\dfrac{c}{\sqrt[3]{3c+ab}}\)
với a,b,c là các số thực dương thay đổi nhưng luôn thỏa mãn \(a^2+b^2+c^2\le3\).CMR a+b+c≤3 và từ đó tìm giá trị lớn nhất của tổng
E=\(\dfrac{a}{\sqrt[3]{3a+bc}}+\dfrac{b}{\sqrt[3]{3b+ca}}+\dfrac{c}{\sqrt[3]{3c+ab}}\)
Cho các số thực dương a , b , c thay đổi luôn thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+a+c\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)