Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
uihugy

Cho a,b là các số nguyên, chứng minh rằng: nếu (2a+3b) chia hết 7 thì (8a + 5b) chia hết 7

Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:

abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b

Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7

⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7

Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7

Khách vãng lai đã xóa
.
14 tháng 2 2020 lúc 15:59

Ta có : 2a+3b\(⋮\)7

\(\Rightarrow\)4(2a+3b)\(⋮\)7

\(\Rightarrow\)8a+12b\(⋮\)7

\(\Rightarrow\)8a+5b+7b\(⋮\)7

Vì 7b\(⋮\)7

\(\Rightarrow\)8a+5b\(⋮\)7

Vậy 8a+5b\(⋮\)7.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Phương Trà
Xem chi tiết
Dương Helena
Xem chi tiết
Nguyễn Hà Thảo Vy
Xem chi tiết
Nguyễn Quốc Thái
Xem chi tiết
Thuy Pro
Xem chi tiết
Vip Boy HandSome
Xem chi tiết
Nguyễn Thị Kim Chi
Xem chi tiết
Trần Hải Linh
Xem chi tiết
Na'Ss Nguyễn
Xem chi tiết