Cho a,b là hai số thực thõa mãn a.b>0
Khi đó, giá trị nhỏ nhất của biểu thức Q=(a+b)(1/a+1/b), Qmin=?
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho a,b là các số thực thỏa mãn a≥1,b≥2. Tìm giá trị nhỏ nhất của biểu thức P=\(a^2\)+\(b^2\)+\(\dfrac{1}{a+b}\)+\(\dfrac{1}{b}\)
Cho a, b là hai số thực thỏa mãn a.b > 0. Khi đó, giá trị nhỏ nhất của biểu thức \(Q=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)là Qmin = .....
___________________
Giúp mình nha. Gấp lắm!!!
Cho hai số thực dương a,b thỏa mãn a+b =1 . Tìm giá trị nhỏ nhất của biểu thức :
a) A = a^2 + b^2
b) B = a^2 - ab + b^2
( Bài toán khá hay về bunhia )
Cho a, b, là các số thực dương thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)
Cho a, b là các số thực thỏa mãn \(a\ge1\) và \(b\ge2\). Tìm giá trị nhỏ nhất của biểu thức
\(P=a^2+b^2+\frac{1}{a+b}+\frac{1}{b}\)
Cho các số thực a,b,c thỏa mãn \(a^2+b^2+c^2=1\)
Tính giá trị lớn nhất và nhỏ nhất của biểu thức P=ab+bc+ca