Cho a,b la 2 số dương thoa man a+b =4. Tim GTLN cua A = 2 \(\left(a^3b+ab^3\right)\)
cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
Cho a,b la cac so thuc duong thoa man a+b >=4 .
Tim GTNN cua P = \(\frac{2a^2+9}{a}+\frac{3b^2+2}{b}\)
Cho a,b la cac so thuc duong thoa man a^2 +b^2 =2.Tim gia tri lon nhat cua bieu thuc
P=a\(\sqrt{b\left(a+8\right)}\)+b\(\sqrt{a\left(b+8\right)}\)
a) tim GTNN, GTLN cua A = \(\sqrt{\left(x-1\right)}\)+\(\sqrt{\left(5-x\right)}\)
b) cho cac so duong x,y thoa man x+y>=3
CM: x+y+1/2x+2/y>=9/2
cho 3 so thuc a,b,c thoa man \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\)
tim min cua \(q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
biet a+b=4 Tinh GTLN cua A = \(2\left(a^3b+ab^3\right)\)
cho a,b>0 thoa man a+b+c=6.Tim GTNN cua \(P=\frac{a^3}{\left(a+b\right)\left(b+2c\right)}+\frac{b^3}{\left(b+c\right)\left(c+2a\right)}+\frac{c^3}{\left(c+a\right)\left(a+2b\right)},\)
cho a,b,c la cac so thoa man a^2+b^2+c^2=<8 tim GTNN cua xy+yz+2xz