Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Chứng minh tích chia hết cho 121 , mà 121 là 1 số chính phương
=> T có ít nhất 1 số chính phương.
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
Cmr: \(A=\left(n+1\right)^2+n^4+1\)chia hết cho 1 số chính phương \(\ne1\)\(\left(n\in Z\right)\)
1. Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
2. CMR: A=\(\frac{1}{3}\left(11...1-33...3\right)00...0\)là lập phương của một số ( n chữ số 1, n chữ số 3 và n chữ số 0)
3. a) Cho a= 11...1 ( n chữ số 1 ), b= 1 00...0 5 ( n-1 chữ số 0). CMR: ab+1 là số chính phương.
b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước.
16, 1156, 111556,...
Cho a,b thuộc Z t/m(17a+5b).(5a+17b) chia hết cho 11. CMR:(17a+5b).(5a+17b) chia hết cho 121
cho 3 số nguyên a,b,c thỏa mãn 2a+b,2b+c,2c+a đều là số chính phương.biết rằng 1 trong 3 số chính phương trên chia hết cho 3.CMR: P=\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\) chia hết cho 81.
Cho:
A=\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
CMR: A là số chính phương khi a,b,c là 3 số đôi một khác nahu
CMR:
\(\frac{n\left(n+1\right)}{2}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\),n thuộc Z là số chính phương
Bài 6: Chứng minh rằng P= \(x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\) là một số chính phương với mọi số thực x và a. (Số chính phương là số có dạng \(a^2,a\in N\))
Chứng minh rằng với mọi số nguyên \(x\) thì biểu thức \(P\) là một số chính phương. \(P=\left(x+5\right)\left(x+7\right)\left(x+9\right)\left(x+11\right)+16\).