Ta có
\(\dfrac{a}{b}=\dfrac{a\left(b+2010\right)}{b\left(b+2010\right)}=\dfrac{ab+2010a}{b\left(b+2010\right)}\) (1)
\(\dfrac{a+2010}{b+2010}=\dfrac{b\left(a+2010\right)}{b\left(b+2010\right)}=\dfrac{ab+2010b}{b\left(2010+b\right)}\) (2)
Nếu \(a=b\Rightarrow2010a=2010b\) nên từ 1 và 2 suy ra \(\dfrac{a}{b}=\dfrac{a+2010}{b+2010}\)
Nếu a>b \(\Rightarrow2010a>2010b\) nên tư 1 và 2 suy ra \(\dfrac{a}{b}>\dfrac{a+2010}{b+2010}\)
Nếu a<b \(\Rightarrow2010a< 2010b\) nên từ 1 va 2 suy ra \(\dfrac{a}{b}< \dfrac{a+2010}{b+2010}\)