Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sky Blue

Cho a,b hữu tỉ thỏa mãn a3b+ab3+2a2b2+2a+2b+1=0.Chứng minh (1 - ab) là bình phương của một số hữu tỉ

Nguyễn Thị Hoa
20 tháng 12 2014 lúc 18:53

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Songoku Sky Fc11
3 tháng 12 2017 lúc 18:35

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm


 

Các câu hỏi tương tự
toi la toi toi la toi
Xem chi tiết
Nguyễn Hải Anh
Xem chi tiết
Nguyễn Thị Sao Mai
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Nguyễn Trà My
Xem chi tiết
Cô gái của tương lai
Xem chi tiết
Hoàng Anh
Xem chi tiết