Cho a>0;b>0 Rút gọn:
\(A=\frac{a+9b+2\sqrt{ab}}{\sqrt{a}+3\sqrt{b}-2\sqrt{\sqrt{ab}}}-2\sqrt{b}\)
\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-b}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+b}\)
a) Rút gọn Q
Cho biểu thức M= \(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)nhau.với hai số a, b dương khác
a/ Rút gọn M
b/Tính giá trị của M khi a=\(\sqrt{6+2\sqrt{5}}\),b=\(\sqrt{6-2\sqrt{5}}\)
rút gọn: \(\frac{a\sqrt{b}+b}{a-b}\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)
rút gọn: \(\frac{a\sqrt{b}+b}{a-b}\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)
Cho a>0, b>0, a khác b. Rút gọn
\(\frac{\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)
Cho \(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)
a, Rút gọn Q
B, Chứng minh Q=\(\frac{b+81}{b-81}\)thì \(\frac{b}{a}\)là một số nguyên chia hết cho 3
cho B=\(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-b}+\frac{a-b}{\sqrt{ab}}\)
a) Rút gọn B
b) Tính giá trị của B khi a=\(\sqrt{4+2\sqrt{3}}\), b=\(\sqrt{4-2\sqrt{3}}\)
Cho \(B=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
a. Rút gọn B
b. Tính giá trị của B khi \(a=6+2\sqrt{5}\)
c. So sanhs B với -1